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Abstract 
We develop and apply a novel quantitative method to understand disease 
dynamics that help policy makers plan interventions to taper viral transmissions 
exemplified by the ongoing effort to stop the spread of COVID-19.  Sparse 
composite likelihood selection is a recently developed method focusing on 
identifying true sparsity in complex models in case of high-dimensional data 
without compromising its asymptotic properties such as unbiasedness.  The 
algorithm has a number of advantages including a rigorous sparsified solution to 
graphical network analysis of complex systems and the ability to efficiently handle 
high-dimensional data such that it is computationally efficient and statistically 
sound. We demonstrate that, unlike conventional shrinkage methods, when sparse 
composite likelihood selection is applied in a graphical network setting, it can 
capture the time-varying effects of mobility restrictions on the COVID-19 spread 
in Montreal and New York.  For each case, we describe the utility of the method 
for surveillance and resource allocation. 

 
1 Introduction 
The recent advances in surveillance systems for infectious disease, capability of data collections 
and storage, and increased computational resources in the last decade have provided 
unprecedented tools for the scientific community to understand and, more importantly, combat 
the spread of infectious disease in populations. The importance of understanding the dynamics 
of underlying process in viral spread in response to its epidemiological factors such as weather-
dependent correlates, the effects of socio-economic factors, and most importantly non-
pharmaceutical interventions has become more evident with the recent COVID-19 pandemic. 

On the other hand, a rise in the availability of sizable and granular data collected from 
non-clinical experiments such as mass testing or unconventional sources such as Google Flue 
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Trends has created a set of new computational challenges for analyzing large amounts of 
infectious disease data.  This big-data regime requires data-driven analysis methods that can 
both mitigate the difficulties of high-dimensional measurements and maintain the fundamentally 
dynamic nature of disease spread. In this manuscript, we demonstrate how one such method, 
sparse composite likelihood selection (SCLS) applied to a graphical network analysis, can help 
in the analysis of infectious disease data.  

Although compartmental models (such as SIR - Susceptible, Infectious, or Recovered) 
used in epidemiology are the workhorse of studying dynamics of an infectious disease, they are 
not equipped for recovering the short-term temporal dynamics in a viral spread due to challenges 
in the complexity and heterogeneity of the unknown underlying system. For example, since all 
observations in the epidemic data reflect transmission events from some time in the past, 
obtaining temporally accurate transmission rate (the effective reproduction number of infections, 
R(t), the average number of secondary cases of disease caused by a single infected individual 
over his infectious period) requires estimations of R(t) with the assumptions about the time 
delay between infections and observations. Sampling from a delay distribution to impute 
individual times of infection from times of observation accounts for uncertainty but blurs peaks 
and valleys in the underlying incidence curve, which, in turn, compromises the ability to rapidly 
detect changes in R(t)	(Gostic et al. 2020, Locatelli 2021).  What we all observe in the COVID-
19 pandemic, for example, is the case numbers and positivity rates based on imperfect testing 
practices (random and selective) on symptomatic or even non-symptomatic people. Due to the 
incubation period (estimated 1 to 21 days) and delays in testing and reporting, there are no 
observed data on the spread - R(t). 

Our method, SCLS applied to a graphical network analysis, is fundamentally assumption-
free operating solely on sliding windows in time, thus alleviating the need for a set of governing 
equations.   Further, the required input data can be observational from historical data and need 
not be generated from simulations to adjust for incubation period. This is particularly true for 
the COVID-19 pandemic.  Our research question, effects of NPI on the spread, is the most 
investigated question in the COVID-19 literature with more than three thousand published 
studies in two years (Perra, 2021).  The contribution of our study is to uncover short-term 
temporal dynamics in the effect of NPI on the spread by using graphical network analysis applied 
with a new method, sparse composite likelihood selection.  We aim to answer the following 
question: when the varying delays between the spread and mobility restrictions are identified 
properly, what would be the maximum possible effect of mobility restrictions? We develop three 
time-varying metrics to answer this question: (1) the correlation that reflects the nature of 
relationship between mobility and positivity rates; (2) the elasticity that measures how 
effectively that relationship is utilized to curb the spread; (3) the delay in the effect of these 
restrictions that reflects how efficient the contact tracing is. 
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Our findings reveal that the relationship between mobility and the spread is highly 
unstable even over short time intervals and there are several periods that show decoupling in 
the relationship.  The delay in the effects of mobility restrictions ranges from 2 days to 22 days 
during the second wave reflecting the fact that we can observe immediate effects of mobility 
when contact tracing is very effective and the spread is relatively low. When there is a rise in 
community spread without well identified sources, however, the effect of mobility on PR 
stretches back to the upper bound of the incubation period, which is estimated to be 14 days, or 
beyond. In addition to contact tracing, logistical imperfections, such as delays in testing 
symptomatic people and long gaps between testing and processing, would also increase the delay. 
Therefore, the varying delays in the effects of mobility restrictions indicate how effective the 
local public policies are and how well they are implemented. This study documents these delays 
since the end of the first wave for New York City (NYC) and Montreal which can be used for 
fine-tuning the public health policies in place. 

The rest of the paper is structured as follows. Section 2 summarizes the literature related 
to the COVID-19 pandemic and its challenges in finding the effect of mobility restrictions on 
the spread.  Section 3 presents the data, a method that introduces lag optimization with rolling 
correlations, and the initial results.  In Section4, we progress to network analysis from rolling 
correlations and discuss how sparse composite likelihood selection is different than other 
penalization methods.  The results and robustness analysis are presented in Section 5. The last 
section concludes with a discussion about our application with COVID-19 data and future 
research. 
 

2 COVID-19 Pandemic 
Centers for Disease Control and Prevention defines nonpharmaceutical interventions (NPI) as 
“actions, apart from getting vaccinated and taking medicine, that people and communities can 
take to help slow the spread of illnesses like pandemic influenza (flu)”.   Although the evidence 
unambiguously indicates that implementing NPIs with successful mobility restrictions have the 
largest effect on curbing the pandemic, studies looking at the dynamics of these confinement 
policies are rare.  For example, recent studies (Askitas et al. 2021 and Nouvellet 2021) find the 
evidence of decoupling of transmission and mobility restrictions in certain periods in some 
countries.  As well, the dynamic impact of each of the confinement policies on the spread is 
different due to the complexity in their association in terms of timing and intensity.  While 
convincing reductions in case numbers have been observed in many regions after rapidly 
implemented mobility restrictions, spatial differences in their efficacy, even across the 
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neighboring regions with the same interventions, require understanding how the relationship 
between transmission and mobility changes over time and space.1 

Despite the incredible effort of many scientific communities, there are still open questions 
and challenges for future work. For example, there is no study capturing the temporal dynamics 
in the relationship between mobility and the spread.  Studies investigating the effect of lockdown 
policies on the incidence of COVID-19 have been mostly using regional - within country – or 
international panel observations with the assumption that the delay between mobility changes 
and their effect on the spread is constant over time and space.  These studies assume that the 
delay ranges from 7 days to 14 days when the spread is measured by reproduction numbers and 
about 23 to 30 days when it is measured in terms of deaths (Flaxman et al. 2020, Fang et al. 
2020).   

For example, there is conflicting evidence on the influence of weather on COVID-19 
transmission (Xu et al. 2021). To estimate weather-dependent signatures of the pandemic, the 
effects of socio-economic factors and non-pharmaceutical interventions must be controlled for. 
Yet, the delay between exposure and detection of infection complicates the estimation of weather 
impact on COVID-19 transmission, potentially explaining significant variability in results to-
date. One of the first studies (Xu et al. 2020) on the subject using the county-level data with 
more than 3700 counties in the U.S. found that failing to control for the delay between infection 
and official recording of cases is the main reason for the mixed evidence. They conclude that the 
delay, which is a particularly understudied factor and estimated to be approximately 10 days, 
confounds the attempts to associate daily weather conditions with recorded new cases and may 
partially explain the inconsistent and inconclusive findings to date. 
 
Figure 1: Mobility vs. Positivity Rates 

	
 

	
1 For example, while Born et al (2020) finds that a lag of one month after lockdown in Sweden would not differ from 
the actual infection dynamics, Cho (2020) with a similar approach but considering a longer lag find that lockdowns 
have been effective in Sweden. 
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Our study compares two major cities: Montreal and New York City. We use test 

positivity rates (PR) that reflect the spread as well as the Facebook mobility data called 

“all_day_bing_tiles_visited_relative_change”, which measures positive or negative changes in 

movement relative to baseline in those three cities. The data on Montreal is from INSPQ and 

obtained by using an unofficial API that powers the INSPQ’s own dashboard.2 Otherwise, the 

data is not publicly available.	 	The data for NYC is available in the government’s website 

provided by daily numbers. 

Most studies use the reproduction number, R, which is the average number of secondary 
cases of disease caused by a single infected individual over his/her infectious period estimated 
based on one of the epidemiological models, mostly an algorithm called “EpiEstim” or 
“EpiNow2”.3 This estimated statistic, which is time and situation specific, is commonly used to 
characterize pathogen transmissibility during an epidemic. Nevertheless, methods fitting 
mechanistic transmission models to incidence data (case or death numbers) are often difficult to 
generalize because of the context-specific assumptions often made.  Instead, we choose to use the 
test positivity rates (PR) (Gostic et al. 2020; Locetti et al. 2020).  Due to high test positivity 
rates led by very low and selective tests, we exclude the first wave and use the test positivity 
rates after June 8, 2020 in each city. The main issue in using PR is that it would be misleading 
when the testing is not random. However, when it comes to gauging the severity of the epidemic, 
the PR might serve as a good proxy for the case incidence rate specially as a day-to-day level 
indicator about how the spread is changing day-by-day. Hence, for a short-run analysis like ours, 
the positivity rate may be a plausible predictor, especially during the period when the test 
numbers are very high with relatively random applications in those three major cities.   
 

3 Rolling correlations with optimal lag control 
Several methods are common in different fields to model the delayed relationships between 
multiple variables. These methods, such as cross-correlation, autoregressive and cross–lagged 
structural models (Cook, Dintzer, & Mark, 1980; West & Hepworth, 1991), multivariate time 
series methods (Box, Jenkins, & Reinsel, 1994), cross–spectral or coherence analysis (Bloomfield, 
1976; Warner, 1998), estimate some set of linear or nonlinear relations between observations 
separated by intervals of time while assuming that this structure remains constant over time.  

A naïve application that uses the whole data with varying lags up to 21 shows that the cross 
correlations between mobility and PR are negative for all lags ranging from -0.84 to -0.69.  When 
the nonstationary with seasonality is removed from both series, these cross correlations become 

	
2 https://www.inspq.qc.ca/covid-19/donnees 
3	https://academic.oup.com/aje/article/178/9/1505/89262	
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zero.  This statistical outcome is not unexpected because, in both cases, one static long-term 
relationship would not fit the entire period.  Since any change in mobility also reflects the overall 
social response - mixed of voluntary and government mandated behavioral changes - to the most 
immediate developments in pandemic, it is also likely to capture reversed causality reflected in 
negative correlations between the observed spread and mobility reductions: A simple visual 
inspection of cross correlations in A2 Appendix can confirm this fact. 

The solution to this problem can be partitioning the data with sliding windows.  For example, 
Nouvellet et al. (2021) set a parametric model to understand the relationship between 
transmission and mobility with 7-day sliding windows and show that the relationship is not 
stable and changes in each window so that, for the 43% of country-periods, the relationship was 
either non-significant (32%) or reversed (11%), which implies that the decline in mobility is 
associated with a rising transmission (measured by deaths). Although the incubation period is 
implicitly incorporated in their estimations, it may not capture the delay between two series in 
each window properly so that the cause-and-effect order is reversed.  
 
3.1 Rolling correlations 
To calculate the dynamic nature of this relationship, we develop a trainable nonparametric 
approach inspired from two recent methods: the dynamic functional connectivity (DFC), which 
has emerged as a major topic in the resting-state BOLD fMRI (blood oxygenation level 
dependent functional MRI) literature and the windowed cross-lagged correlation (WCLC) that 
is used in behavioral psychology (Boker et al. 2002) to analyze the movement synchrony in 
nonverbal communications.  The idea behind both methods is relatively simple: analogous to a 
moving average function, a sliding window analysis computes a succession of pairwise correlation 
matrices using the time series from related sources.4  The complexity of the sliding window 
technique, however, comes from finding the appropriate settings of multiple parameters such as 
window function, length, and step size which remain unknown due to lack of “ground truth” 
that defines the relationship. Therefore, the problem of “window-size” remains as a main 
challenge in both methods: increasing a window length results in decreasing the sensitivity for 
identifying fast changes with very long windows eventually measuring static connectivity. On 
the other hand, shorter windows can increase sensitivity for detecting short transition states but 
at the expense of decreasing the signal-to-noise ratio leading to spurious fluctuations in the 
dynamic connectivity. 

	
4 Although DFC (and WCLC) has been long used, there are still considerable technical issues associated with both 
approaches.  A great effort has recently been dedicated to investigating how the size of sliding windows affects DFC 
estimations. It is essential to determine the window length that allows reducing spurious fluctuations and at the same 
time capturing faster dynamic correlations. One of the most suggested methods to address spurious fluctuations in 
DFC is to estimate a method when the window length is not shorter than the largest wavelength present in both 
series.  An extensive review on DFC and how it is used in neuroscience is provided by Lurie et al. (2020). 
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Unlike the applications in neuroimaging, finance, environmental studies, and behavioral 
psychology, we have an unquestionable epidemiological “ground truth”, the fact that the spread 
of an infectious disease must be positively related to the intensity of contacts (contact rate x 
probability of transmission) in a population, which is the core idea in the so-called SIR models 
(Blackwood and Childs, 2018).  This prior knowledge in the relationship between PR and the 
mobility series enables us to consider cross-correlations in sliding windows.    

 
Figure 1: Schematic of the algorithm with zero-order correlations 

 

 
Notes: Numbers represent the time in days. 

 

3.2 Cross-correlations in sliding windows 
A common method for estimating the association between two time series is cross–correlation 
based on a vector of sequential observations selected from each time series such that both vectors 
contain the same number of occasions. Then, Pearson product moment correlation is calculated 
for these two vectors. The time interval separating the beginning of the two vectors is called as 
“lag” or “offset”, 𝜏 .  A similar method, as known as windowed cross-lagged correlation (WCLC) 
introduced earlier in 2002 (Boker et al. 2002) is widely used in behavioral sciences. The cross–
correlation between X and Y at a lag 𝜏  can be defined as 

 

𝑟(𝐗, 𝐘, 𝜏) = 1
𝑁 − 𝜏 ∑  

𝑁−𝜏

𝑖=1

(𝑥𝑖 − X̅̅̅̅̅)(𝑦𝑖+𝜏 − �̅̅̅̅̅�)
sd(𝐗)sd(𝐘)  
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However, a single measure of cross–correlation may not provide a good representation of 
association between two globally stationary time series, as the delayed association between two 
series is subject to change in small windows of observations.  When a stable association between 
two behavioral time series is not expected, a more temporally detailed analysis of cross-
correlation can be calculated using many short cross–correlational windows in which the starting 
time of windows of observations is incremented over the whole data set.   

One way to examine how the intensities and delays of association between two time 
series are changing over time is to use shorter intervals of data from each time series to estimate 
the association with dynamically selected delays so that the only one lag (i.e., the time difference 
in starting points of both series) maximizes the strength of their positive association, which is 
illustrated in Figure 1. The justification of this objective, finding the maximum positive 
relationship with a dynamic lag control, is based on the epidemiological fact that the relationship 
between mobility restrictions and the viral spread must be positive or zero.  The existence of 
this “grand truth” is a necessary condition for the dynamic lag control and underlines the 
difference between DFC and our approach.  Hence, using short sliding windows that cover the 
time series leads to a moving estimate of association with the time-varying lags so that the 
correlation is maximized in each window.  The results are presented in Figure 2. 
 

Figure 2: Maximum correlations and delays - Mobility and PR 
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As stated before, we ignore the first 100 days and start on June 8 due to possibly misleading PR 
numbers. The graphs above show the estimation of maximum correlations between mobility and 
PR in each 7-day rolling windows calculated with optimal lag control.  Note that series are first-
differenced.  The figures at the bottom show the time varying delays when the maximum positive 
correlation is obtained between mobility restrictions and PR.  We can think that more immediate 
effects of mobility on PR happen when the effectiveness of contact tracing is high. When there 
is an increase in community spread without well identified sources, the effect of mobility on PR 
stretches back to the upper bound of the COVID-19 incubation period, which is estimated to be 
14 days, or beyond.   
 
3.3 Limitations 
  One of the challenges in this method is to control for coincidentally identified correlations, which 
has been well discussed and documented in a recent study by Dean and Dunsmuir (2015). There 
are two general concerns in assessing the relationship between two series: first, whether the 
genuine association between two series is distinguishable from lagged synchrony that would occur 
by chance.  Second, an assessment of statistical significance is needed.  A conventional approach 
for addressing the first concern is to establish reasonable estimates of significance limits by using 
surrogate data.  In our case, we search the maximum positive correlation between a subset (one 
window) of mobility series and 21 subsets (21 subsequent rolling windows) of PR series. As 
described Figure 1, the algorithm finds a correlation matrix where the rows represent each rolling 
window, and the columns show the correlations for each of the 21 lags. 
 
Figure 3: Heatmaps of correlation matrices 
 

 

 
Note: Darker colors represent positive correlation.  In both heatmaps, rows show the rolling windows (starting day) and the columns 
show the lags (delay between PR and Mobility series in days) 
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To address the concern of whether the correlation matrix from two completely 
independent random series would be distinguishable from the one that uses the original series, 
we show the heatmap of correlation matrices in Figure 3.  The first heatmap is from the original 
correlation matrix after reducing the noise using a Rank 2 approximation.  The second heatmap 
reflects the correlation matrix of a surrogate data set generated with constraints on the first and 
second orders.  That is, we preserve the same power spectrum as in our data, with identical 
linear correlations and the same first order properties (variance and mean).  The heatmaps show 
that our algorithm captures the correlations beyond a random coincidence.  However, finding 
the delay where the maximum correlation occurs in each rolling window remains a main 
challenge, since it assumes that the maximums are the true correlations in each rolling window 
beyond a random coincidence.   
 
Figure 4: Algorithm with partial correlations 
 

 
Notes: Numbers represent the time in days. 

 
The method described above is used to evaluate whether our search algorithm finds 

correlations that can be a random coincidence.  Yet, to evaluate the statistical significance of 
each correlation coefficient, there needs to be properly calculated standard errors for each rolling 
window.  However, due to the sample size (7) in each rolling window, a conventional normality 
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assumption cannot be sustained.  Further, using bootstrap applications with a very small sample 
size (less than 20) are not generally recommended as their reliability becomes questionable. 

In addition to these two problems, since the correlations are zero-order, they omit the 
intermediate lags of each series in their calculations.  When analyzing the delayed effect of the 
mobility on PR with correlations, the effects of intermediate lags of both series should be 
controlled for by using partial correlations.  These issues bring us to develop a different method 
so that we can address these challenges. 

 
4 Network analysis 
When the objective is to analyze the synchronous relationship between two time series signals 
with bivariate data, zero-order cross correlations with sliding time-windows are capable to 
discover the dynamics of the relationship. Zero-order correlation is robust and parameter free, 
but there is an intrinsic limitation to identify the direct effects of time-delayed relationship. To 
understand the limitation of zero-order correlations and the nature of graphical networks, we 
fist explain why our algorithm depicted in Figure 1 and applied above has to be restructured. 

Our objective to discover the delayed effect of mobility on PR. The algorithmic described 
in Figure 4 takes an example of the first 7-day window for Lag 5. While a zero-order correlation 
between PR5 and MOB can be calculated using only these series (blue area), it ignores the 
indirect effects of intermediate lags shown in the grey area in the “embedded data matrix”. 
When control for the intermediate lags between PR5 and MOB, it creates a complex network 
for each sliding and lagged window. As shown in the schema, this leads to high-dimensional 
multivariate embedded data matrices where the sample size (n) is 7 but the number of columns 
(p) in each matrix goes up to 42 as the delays (lags) are set between 1 and 21 in each window. 

To obtain partial correlations, when the data is multivariate, its dimension must be n>p, 
which is required for non-singular covariance matrix. When the data become high-dimensional 
with n<<p, a regularized inverse covariance (precision) matrix is needed. Regularization leads 
to a network analysis that identifies the set of substantial connections (edges) between variables 
(nodes) and eliminates others.  With a proper visualization of the network, it is called as 
graphical network analysis - or Gaussian Graphical Method (GGM), if the data satisfy conditions 
for a multivariate normal distribution - and mostly used in genomics, finance, psychology, 
neuroscience to identify the “edges” (David Hevey, 2018).  Formally, let Ω̂ denote a generic 
estimate of the precision matrix and consider its transformation to a partial correlation matrix 
�̂�. Then the following relations can be shown to hold for all pairs {𝑌𝑗, 𝑌𝑖} ∈ 𝒱 with 𝑗 ≠ 𝑖 : 

 
(�̂�)𝑗𝑖 = 0 ⇔ (Ω̂)𝑗𝑖 = 0 ⟺ 𝑌𝑗 ⊥ 𝑌𝑖 ∣ 𝒱 ∖ {𝑌𝑗, 𝑌𝑖} 
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A contemporary use for precision matrices is found in network reconstruction through 
graphical modeling (Network Analysis). Graphical modeling refers to a class of probabilistic 
models that uses graphs to express conditional (in)dependence relations between random 
variables.  In a multivariate normal model, 𝑝𝑖𝑗 = 𝑝𝑗𝑖 = 0  if and only if 𝑋𝑖  and 𝑋𝑗  are 

conditionally independent when condition on all other variables, i.e. 𝑋𝑖 and 𝑋𝑗 are conditionally 

independent given all 𝑋𝑘 where 𝑘 ≠ 𝑖 and 𝑘 ≠ 𝑗 if and when the 𝑖𝑗 th and 𝑗𝑖 th elements of 𝐏 
are zero. In real world applications, this means that 𝐏 is often relatively sparse (lots of zeros). 
This also points to the close relationship between 𝐏 and the partial correlations. The non-zero 
entries of the symmetric 𝐏  matrix can be interpreted the edges of a graph where nodes 
correspond to the variables. 

 
4.1 Ridge and gLasso for sparsified precision matrix 
Interest in graphical models that combine a probabilistic description (through a multivariate 
distribution) of a system with a graph that depicts the system’s structure (capturing dependence 
relationships), has surged in recent years [ref]. In its trail this has renewed the attention to the 
estimation of precision matrices as they harbor the conditional (in)dependencies among jointly 
distributed variates. With the advent of high-dimensional data, for which traditional precision 
estimators are not well-defined, this brought about several novel precision estimators. Generally, 
these novel estimators overcome the undersampling by maximization of the log-likelihood 
augmented with a so-called penalty. A penalty discourages large (in some sense) values among 
the elements of the precision matrix estimate. This reduces the risk of overfitting but also yields 
a well-defined penalized precision matrix estimator. 

To solve the problem, penalized estimators (like Ridge or gLasso5) adds a so-called 
penalty to the likelihood functions (ℓ2 in Ridge and ℓ1 in lasso) that makes the eigenvalues of 𝐒 
shrink in a particular manner to combat that they “explode” when 𝑝 ≥ 𝑛 (Wieringen and 
Peeters, 2016). “Shrinking” is a “biased estimation” as a means of variance reduction of 𝐒. The 
graphical lasso (gLasso) is the ℓ1-equivalent to graphical ridge. A nice feature of the ℓ1 penalty 
automatically induces sparsity and thus also select the edges in the underlying graph. The ℓ2 
penalty in Ridge relies on an extra step that selects the edges after the regularized precision 
matrix with shrunken correlations is estimated.  

Regularization helps us find the sparsified partial correlation matrix for each window 
and lag. Since this matrix reveals the significant “edges” in the network, it shows whether the 
link between mobility series in each 7-day window with a specific lag and PR series is significant 
or not. However, since the penalization introduces bias, the correlation coefficient could be 
useless with their unknown asymptomatic features.  The overcome this problem, one can apply 

	
5 https://cran.r-project.org/web/packages/glasso/index.html 
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the 2-stage estimations as shown in Figure 5. This process can be defined with the following four 
steps: 

1. The sparsified correlation matrix in each window and lag identifies whether the link 
(“edge”) between PR and mobility (in the example above PR5 and MOB) is zero or not. 

2. If it is zero (i.e., no link between PR5 and MOB), it puts zero in the final correlation 
matrix. If it is not zero, it identifies other control variables (intermediate lags of PR and 
MOB) that are significant. 

3. If the number of “unsparsified” control variables is less than 5, it calculates the partial 
correlation for that specific window and the lag and checks its statistical significance. If 
it is not statistically significant it replaces its correlation with zero in the correlation 
matrix. 

4. If the number of “unsparsified” control variables is more than five, the algorithm selects 
the most “significant” four control variables based on their shrunken ridge estimates. 

 
Thus, this procedure enables a two-layer robustness check: (1) with the sparsification of each 
precision matrix, it identifies the nonexistent edges between PR and MOB for each window and 
lag; (2) if the link exists, it identifies whether it is statistically significant or not. If it is not, it 
replaces it with zero in the correlation matrix. 
 

Figure 5: Algorithm with Ridge & gLasso 
 

 
Notes: Numbers represent the time in days. 
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Recovered partial correlations after a sparsification could be problematic as the 2-step estimation 
described above ignores the symmetry in each correlation matrix. There are some recent 
discussions about how to recover de-biased estimates (Ha and Sun, 2014) but their asymptotic 
properties are not established yet.  An alternative method to these parametric penalization 
methods (Ridge and gLasso) can be a solution to these issues, which we describe below.   
 
4.2 Sparse composite likelihood selection (SCLS) 
In this section we will summarize the key characteristics of using SCLS that distinguish its 
approach from classic shrinkage methods such as Ridge and gLasso described and applied 
pervious sections.  

Let 𝑌  be a 𝑑 × 1 random vector with density 𝑓(𝑦; 𝜃) indexed by the parameter 𝜃 ∈ 
Θ ⊆ ℝ𝑝. Suppose that the full 𝑑-dimensional density of 𝑌  is difficult to specify or compute but 
we can identify 𝑝 densities 𝑓𝑗(𝑦; 𝜃)(𝑗 = 1,… , 𝑝) defined on low-dimensional subsets of 𝑌 , such 
as marginals 𝑌𝑗 , pairs (𝑌𝑗, 𝑌𝑘) , or conditionals 𝑌𝑗 ∣ 𝑌𝑘 = 𝑦𝑘(𝑗 ≠ 𝑘) . Given independent 
observations 𝑌 (1),… , 𝑌 (𝑛) on 𝑌 , the composite likelihood estimator maximizes the composite 
log-likelihood function 
 

ℓ(𝜃; 𝑌 (1),… , 𝑌 (𝑛)) = ∑  
𝑝

𝑗=1
ℓ𝑗(𝜃; 𝑌 (1),… , 𝑌 (𝑛)) 

 
where ℓ𝑗(𝜃; 𝑌 (1),… , 𝑌 (𝑛)) = ∑𝑖=1

𝑛  log 𝑓𝑗(𝑌 (𝑖); 𝜃) denotes the sub-likelihood associated with the 

𝑗th data subset. The composite likelihood estimator has become popular in many areas of 
statistics due to the simplicity in defining the objective function and computational advantages 
compared to the maximum likelihood estimator. At the same time, it has the same desirable 
first-order properties as maximum likelihood, such as consistency; see Varin et al. (2011) for a 
comprehensive survey. 

The composite likelihood framework naturally suits problems where the parameter 
dimension 𝑝 is allowed to diverge with the sample size. Since composite likelihood selection is a 
form of regularization but not in the parameter space, it provides a crucial tool as it solves many 
issues in both statistical properties and computing cost of the resulting estimator. Recent works 
(Caterina and Ferrari, 2021; Huang and Ferrari, 2021) introduce a flexible and computationally 
convenient method to build a composite likelihood function starting from a very large number 
of potential sub-likelihood candidates 6 . The main idea is to minimize a convex criterion 
representing statistical efficiency with the addition of a weighted 𝐿1-penalty to avoid selection 
of too many noisy terms. Each sublikelihood is assumed to contain distinct elements of 𝜃 in its 

	
6	See	two	most	recent	working	papers:		
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setting; while this simplification has further computational advantages when 𝑝 is large, it also 
enables one to conduct model selection. The key point here is that the penalty focuses on 
selection of sub-likelihood functions rather than of elements of 𝜃 . Unlike classic shrinkage 
methods (Ridge gLasso), this strategy has the advantage to retain unbiasedness of the final 
estimating equations and consistency of the related parameter estimator.  Therefore, in our case, 
the sparsity of our precision matrix can be obtained without compromising consistency of the 
partial correlation estimates. 

To summarize the method, let us look at a case where the parameter vector 𝜃 =
(𝜃1,… , 𝜃𝑝)⊤ is sparse, in the sense that a large fraction of its elements is exactly zero, and 𝑝 
is allowed to grow with the sample size 𝑛. Let 𝒜 = {𝑗: 𝜃𝑗 ≠ 0} be the index set for the 𝑝∗ 
nonzero elements in 𝜃 indicating respective sub-vectors and sub-matrices when used as a 
subscript. It is assumed here that each sub-likelihood ℓ𝑗(𝜃) depends only on the specific 
component 𝜃𝑗; this simplification has computational advantages when 𝑝 is large. The marginal 
scores are defined by 𝑢𝑗(𝜃𝑗; 𝑦) = ∂log 𝑓𝑗(𝑦; 𝜃𝑗)/ ∂𝜃𝑗(𝑗 = 1,… , 𝑝) , whilst 𝑢(𝜃; 𝑦) =
{𝑢1(𝜃1; 𝑦),… , 𝑢𝑝(𝜃𝑝; 𝑦)}⊤  denotes the vector collecting all these scores. The approach 
presented next is also valid for the more general setting where each sub-likelihood depends on 
a finite number of parameters, in which case the 𝑗th  score equals 𝑢𝑗(𝜃; 𝑦) =
∑𝑘=1

𝑝  ∂log 𝑓𝑘(𝑦; 𝜃)/ ∂𝜃𝑗. 
The main goal is to reduce the model dimension by dropping all the zero elements of 

𝜃 while estimating the remaining elements. To this end, we take the estimator 𝜃 ̂with 𝑗th 
element defined by 𝜃�̂� = 𝜃𝑗𝐼(�̂�𝑗 ≠ 0), where 𝜃�𝑗 is the 𝑗th marginal estimator 

 

𝜃�𝑗 = {𝜃𝑗: 0 = ∑  
𝑛

𝑖=1
 𝑢𝑗(𝜃𝑗; 𝑌 (𝑖))} (𝑗 = 1,… , 𝑝) 

 
and �̂� = (�̂�1,… , �̂�𝑝)⊤ is the selection rule obtained by minimizing the penalized objective 
 

𝑑�̂�(𝑤) = 1
2 𝑤⊤𝐶�̂� − 𝑤⊤diag (𝐶 )̂ + 𝜆

𝑛 ∑  𝑝
𝑗=1

∣𝑤𝑗∣
𝜃�𝑗2

                         (1) 

 
for some user-specified constant 𝜆 ≥ 0. Here diag(𝐴) is the diagonal vector of the square 
matrix 𝐴, where 𝐶  ̂is an estimator of the 𝑝 × 𝑝 score covariance matrix 𝐶(𝜃) = var{𝑢(𝜃; 𝑌 )} = 
𝐸{𝑢(𝜃; 𝑌 )𝑢(𝜃; 𝑌 )⊤}. 
 
In our case, a natural choice considered here is the empirical covariance matrix 
 

𝐶 ̂ = 1
𝑛 ∑  

𝑛

𝑖=1
𝑢(𝜃�; 𝑌 (𝑖))𝑢(𝜃�; 𝑌 (𝑖))⊤ 
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Figure 6: Algorithm with SCLS 
 

 
 
Sparse sub-likelihood selection occurs through the minimization of the convex objective (1): 
the 𝑗th sub-likelihood ℓ𝑗(𝜃) is included in the composite likelihood function if �̂�𝑗 ≠ 0, else ℓ𝑗(𝜃) 
is dropped and the corresponding parameter estimate is set as 𝜃�̂� = 0(𝑗 = 1,… , 𝑝). The selected 
composite likelihood function is interpreted as one that maximizes statistical accuracy given a 
desired level of sparsity. In particular, when 𝜆 = 0 the objective 𝑑0̂(𝑤) corresponds to the so-
called finite-sample optimality criterion, a benchmark to find minimum variance estimators 
for unbiased estimating equations. The last term in (1) is a sparsity-inducing penalty 
discouraging overly complicated composite log-likelihoods. 

The geometric properties of the 𝐿1-penalty imply that several elements in �̂� are exactly 
zero for sufficiently large values of 𝜆, which also induces sparsity in the estimator 𝜃.̂ The 
considered penalty is adaptive in the sense that when 𝜃�𝑗 is near 0 the 𝑗th sublikelihood receives 
a large penalty. Adaptive weighting is a fundamental feature of this method ensuring 
consistent model selection.  The penalty is inspired by the adaptive Lasso penalty introduced 
by Zou (2006) in the context of sparse regression; however, the role of the adaptive penalty 
here is completely different because it focuses on the coefficients 𝑤𝑗𝑠 associated with entire 
sub-likelihoods, rather than on the parameter elements 𝜃𝑗s. Penalization on the score space 
enables one to separate the task of model selection from that of parameter estimation. 

Hence, differently from existing penalized composite likelihood procedures, the selected 
estimating equations remain unbiased and lead to consistent parameter estimators when the 
sub-likelihoods are corrected selected. In the next sections, we will report the results obtained 
from the application of SCLS. 



	

	

17 

5 Results 
The application of SCLS provides us three vital features that we cannot have them with 
thresholding Ridge or gLasso: (1) since entries in the precision matrix are unbiased, partial 
correlation coefficients can be calculated without any auxiliary application (de-biasing or 2-stage 
partial correlations); (2) since each precision matrix is sparsified, we can also see whether the 
partial coefficient between MOB and PR in each rolling window with different lags is sparsified 
or not.  This provides a unique opportunity to skip the conventional test for statistical 
significance, which is otherwise impossible with other methods. 
  Below, we only present selected results based on correlation matrices estimated by SCLS 
as described in Figure 6.  The maximum correlation for each row in the matrix containing the 
partial correlations is selected as the “most diverse” and highest positive correlation among 21 
candidates for each window (row).  We can calculate 95% confidence intervals for each 
unsparsified correlations.  After eliminating the negative correlations, the “most diverse” 
maximum correlation is the one that has the lowest intersections with others based on all 
confidence intervals in any given row.  This application is discussed in the Appendix. 
   

Figure 6: Delay - Montreal 
 

 

 
 
Figure 6 shows the delay in the maximum effect of mobility on PR for Montreal. The dark blue 
line is obtained by a simple smoothing showing that delays in the effect of mobility restrictions 
are relatively shorter when during the 2nd wave.  The table below summarizes the correlations 
for both cities. The number of sparsified correlations are indicated by NA’s indicating decoupling 
around 24 percent of the time between PR and mobility. 
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Table 1: Summary of maximum correlations 
  

Montreal   NYC 
Min. 0.566 

 
0.495 

1st Qu. 0.732 
 

0.709 
Median 0.821 

 
0.799 

Mean 0.816 
 

0.823 
3rd Qu. 0.904 

 
0.911 

Max. 0.998 
 

1 
NA's 66 

 
61 

%.NA's 24.6 
 

23.2 
 
 
5.1 Elasticies 
The correlation captures the degree of relatedness between PR and mobility but cannot reveal 
the responsiveness of PR or to degree of which PR changes in response to changes in mobility. 
This is also called elasticity and can be defined as follows: 
 

𝑥-elasticity of 𝑦: 𝜖 = ∂𝑦/𝑦
∂𝑥/𝑥, 

 
which is the ratio of the percentage change in one variable to the percentage change in another 
variable, when the latter variable has a causal influence on the former. It is a useful tool for 
measuring the sensitivity of one variable to changes in another, causative variable. It also has 
the advantage of being a unitless ratio, independent of the type of quantities being varied.  The 
concept of elasticity is also related to two other statistics that measure the linear association 
between two series, a slope coefficient in a single-variable regression, 𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝜀𝑖, and 
correlation coefficient that we calculated in the previous sections.  The slope coefficient can be 
expressed as  

𝛽 =
∑  𝑛

𝑖=1 (𝑥𝑖 − 𝑥)̅(𝑦𝑖 − 𝑦)̅
∑  𝑛

𝑖=1 (𝑥𝑖 − 𝑥)̅2

=
𝑠𝑥,𝑦

𝑠𝑥
2

= 𝑟
𝑠𝑦

𝑠𝑥

 

 
where 𝑠𝑥,𝑦 is a simple covariance between 𝑥 and 𝑦, 𝑠𝑥

2  is the variance of 𝑥, 𝑟 is the coefficient 
of correlation between the 𝑦 and 𝑥, and 𝑠𝑦 and 𝑠𝑥 are their standard deviations, respectively. 
Consequently, the “mean” elasticity, 𝜖 , may be written with 𝑦 = 𝑃𝑅  (Positivity Rate) 
and 𝑥 = 𝑅 (Restrictions) as follows: 
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𝜖 = ∂𝑃𝑅/𝑃𝑅
∂𝑅/𝑅 = 𝑟

𝑠𝑝𝑟

𝑠𝑟

�̅̅̅̅̅�
𝑃𝑅̅̅̅ ̅̅ ̅̅ ̅̅ 

 
It follows, therefore, that when 𝑟 is in the neighborhood of 1, the spread will be more sensitive 
or less (i.e., 𝜖 ≶ 1) depending on two facts: the spread of COVID-19 is more or less variable 
than the mobility (𝑆𝑃𝑅

𝑆𝑅
) and the magnitude of restrictions relative to how widespread PR is ( �̅̅̅̅̅�

𝑃𝑅̅̅̅ ̅̅ ̅̅ ̅̅ ̅).  
Figure 7 shows the elasticities for two cities. 
 
Figure 7: Elasticities 

 

 
 
The mean elasticity, 0.29, shows that PR is not sensitive to mobility changes on average when 
we consider the whole period after June 8. At the beginning of the second wave, however, it 
changes and becomes 0.40. which implies that, when the mobility goes down 10%, PR falls, on 
average, 4% during the second wave. Although New York City have lower correlation coefficients 
around 0.75, its elasticity is higher about 0.72.  
 
5.2 Counterfactual Elasticies 
We use counterfactual elasticities to compare the effectiveness of mobility restrictions in 
Montreal against NYC. We create a hypothetical case where we calculate elasticities for Montreal 
using the data for NYC.  This shows how effective the mobility restrictions would have been 
had Montreal had the same PR and mobility measures as NYC during the 2nd wave between 
September 16, 2020 and March 23, 2021. 

In order to have this much jump in the elasticity for Montreal, two things have to be 
true in NYC relative to Montreal: (1) the magnitude of the decline in mobility should be much 
higher relative to the rise in spread (�̅̅̅̅̅�/𝑃𝑅̅̅̅ ̅̅ ̅̅ ̅̅); (2) the mobility should have a much higher 
temporal variation relative to positivity rates (𝑆𝑃𝑅/𝑆𝑅). Given that the mobility metrics rather 
measure the people’s behavioral response to the spread, these differences imply the following 
possibilities in Montreal: (1) the average reduction in mobility relative to the spread might not 
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have been enough in terms of its magnitude and speed; (2) a significantly lower public sensitivity 
to the COVID-19 spread.  These facts can be verified by tables provided in Figure 8. 
 
Figure 8: Elasticity of Montreal’s PR in NYC 
(Between September 16, 2020 & March 23, 2021) 

 

 
 

 
Measures are calculated for each 7-day sliding window and averaged over the entire period, Counter-factual elasticity, 1.44, 
is [Beta (Montreal) X mean(R)/mean(PR) (NYC)] calculated for each sliding window and averaged over the entire period. 

 
5.3 Robustness Check 
  The main concern is whether the correlation matrix from two completely independent random 
series would be distinguishable from the one that we obtain using our mobility and PR series.  
We generated three different surrogate data sets with 5000 runs in each.  The results and the 
codes will be available upon request 
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6 Conclusion 
Multiple studies found that weather components are associated with the transmission of the 
virus. However, there is conflicting evidence on the influence of weather on COVID-19 
transmission. To estimate weather-dependent signatures of the pandemic, the effects of socio-
economic factors and non-pharmaceutical interventions must be controlled for. The delay 
between exposure and detection of infection complicates the estimation of weather impact on 
COVID-19 transmission, potentially explaining significant variability in results to-date. One of 
the first studies (Xu et al. 2020) on the subject using the county-level data with more than 3700 
counties in the U.S found that failing to control for the delay between infection and official 
recording of cases is the main reason for the mixed evidence. They conclude that the delay, 
which is a particularly understudied factor and estimated to be approximately 10 days, confounds 
the attempts to associate daily weather conditions with recorded new cases and may partially 
explain the inconsistent and inconclusive findings to date. 

Although the evidence unambiguously indicates that NPIs with successful mobility 
restrictions are the most effective tool in curbing the pandemic, studies looking at the dynamics 
of these confinement policies are rare. While convincing reductions in case numbers have been 
observed in many regions after rapidly implemented mobility restrictions, spatial differences in 
their efficacy, even across the neighboring regions with the same interventions, require 
understanding how the relationship between transmission and mobility changes over short time 
and space. 

Despite the incredible effort of many scientific communities, studies capturing the short-
term temporal dynamics in the relationship between mobility and the spread are absent. Most 
studies investigating the effect of lockdown policies on the incidence of COVID-19 assume that 
the delay between mobility restrictions and their effect on the spread is constant over time and 
space. Although compartmental epidemic models are able to incorporate the incubation period 
in their analyses by modeling the associated uncertainty based on some parameterized 
probability distributions, the results cannot reveal the dynamics of the time-varying relationship 
between mobility and the spread. 

We develop and apply a novel quantitative method to understand disease dynamics that 
help policy makers plan interventions to taper viral transmissions exemplified by the ongoing 
effort to stop the spread of COVID-19.  Sparse composite likelihood selection is a recently 
developed method focusing on identifying true sparsity in complex models in case of high-
dimensional data without compromising its asymptotic properties such as unbiasedness.  The 
algorithm has a number of advantages including a rigorous sparsified solution to graphical 
network analysis of complex systems and the ability to efficiently handle high-dimensional data 
such that it is computationally efficient and statistically sound. We demonstrate that, unlike 
conventional shrinkage methods, when sparse composite likelihood selection is applied in a 
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graphical network setting, it can capture the time-varying effects of mobility restrictions on the 
COVID-19 spread in Montreal and New York.  For each case, we describe the utility of the 
method for surveillance and resource allocation. 
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Appendix 
Window size 
Wavelets allow us to study localized periodic behavior. In particular, we look for regions of high-
power in the frequency-time plot.  The intensity of the colormaps in Figure 13 represents the 
variance of the time series that is associated with particular frequencies (y-axis) through time 
(x-axis). Our wavelet analysis is able to detect frequencies that are localized in time, and 
therefore if the dominant period of a time series changes over time, wavelets can be used to 
detect this transition.  The map shows that around days 7 and 8, the second wave shows a 
dominant variation.  We ignore the higher variations around day 100 which captures the 
increasing variations during the first and second waves of the epidemic. This is also captured by 
the spectral analysis applied on the first-differenced PR and mobility series after Day 100, which 
indicates the same frequency, 7 days, in both series. 
 
Figure A1: Wavelet heatmaps 

	  
 
We also run a spectral analysis that supports the finding of the wavelet analysis.  The results 
and the codes can be found in the same html file 


