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Motivation

I Can we recover the short-term temporal dynamics in the
relationship between two (or more) time-series signals with
minimum assumptions (about data structure, model)?

I For example, a method is needed to identify the number of
days required to generate an intended effect on positivity rates
(PR) following the mobility restrictions.

I Although the evidence unambiguously indicates successful
mobility restrictions have the largest effect on curbing the
pandemic (before vaccines), studies looking at the dynamics of
these confinement policies are rare.

I This method can be implemented to any two time-series signals
(with a known direction of correlation) to recover dynamic
correlations.



Summary

I Two time-series signals: Xt and Yt and both are I(0),
I Xt → Yt+s and s 6= 0 and s ∈ {1 : 21},
I Find s∗ that maximizes the partial correlation between Xt and

Yt+s
I Since s∗ is not constant (time-varying relationship),

sliding-window correlations are calculated
I Window length can be found by a wavelet analysis (as in TVFC

literature)
I Since the algorithm searches for s∗ in the window, we need to

be sure that it represents the genuine association between two
series. It must be distinguishable from lagged synchrony that
would occur by chance.

I Regularization and statistical significance can solve (or reduce)
this problem



Example: PR vs. Mobility



Cross-Correlations - Level



Cross-Correlations - (diff)



Why correlations have no meaning?

I Reverse causality: mobility reduction as a response to spikes in
cases.

I Mobility shows its effect on PR dynamically (over time).
I They are zero-order cross-correlations
I There is no static relationship. For instance, 7 day-lag could be

too short or too long in different windows.
I Contacts are not homogeneous across individuals and locations.



COVID-19: Effect of mobility on PR

I We use only observed data: Positivity Rate (cases/tests) and
Mobility index (Facebook)

I Take them as two time-series signals and see if we can recover
any meaningful relationship between them

I We use Montreal, as it is the most detailed COVID-19 Data
(not publicly available)



TVFC

I Recently, time-varying functional connectivity (TVFC) has
emerged as a major topic in the resting-state BOLD fMRI
literature.

I TVFC uses running correlations between pairs of stochastic
time series to identify their low-frequency evolution, which
gives an idea about the functional organization of the brain

I Other fields, like Environmental Science, Behavioral Psychology,
and Finance use rolling correlations as their main tool

I TVFC measures simultaneous associations between two
series in sliding-windows

I The problem of “window-size” still remains as a main challenge
in both methods:
I very long windows eventually measure static connectivity.
I shorter windows can increase sensitivity for detecting

short transition states but at the expense of decreasing
the signal-to-noise ratio



Modified TVFC

I Ground truth: the mobility changes must predict the events
of infection measured by PR, only if mobility changes occur
before the events of PR.

I Estimate the association with dynamically selected delays
I So that the only one lag (i.e., the time difference in starting

points of both series) maximizes the strength of their positive
association.



Algorithm
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Maximums and Delays



Shortcomings

I Correlations are not partial: intermediate lags are not controlled
I Even with a well-grounded epidemiological “truth” and with

de-trended I(0) series, we need to know:
I Whether the genuine association between two series is

distinguishable from lagged synchrony that would occur by
chance.

I Whether correlations are out of 95% CI



Partial Correlations
I Most studies look at the synchronous temporal correlations

among regions of interest (bivariate or multivariate). See Brain
Imaging Methods.

I When it’s bivariate and synchronous, zero-order correlations
with sliding time-window based analysis are just fine

I When it’s multivariate, n > p is required for non-singular
covariance matrix to obtain partial correlations.

I When n << p, a regularized inverse covariance (precision)
matrix is needed

I Regularization leads to a network analysis that identifies the set
of substantial connections (edges) between variables (nodes)
and eliminates others

I Mostly used in genomics, finance, psychology, neuroscience to
identify the “edges”.

I With a proper visualization of the network, it’s called Gaussian
Graphical Method, if MVN.

https://www.frontiersin.org/articles/10.3389/fnins.2018.00525/full
https://www.frontiersin.org/articles/10.3389/fnins.2018.00525/full


Delay-coordinate embedding



Regularization

I Even if n > p, we can use regularization to identify “significant”
partial correlations

I Berkson’s paradox could be an issue

Although there is no link between Node 1 (PR) and Node 2 (mob),
the partial correlation between these two nodes could be high and
significant - Regularization may correct the paradox and
reduce the noise-to-signal ratio (Nie et al. 2015).

https://link.springer.com/chapter/10.1007/978-3-319-23344-4_13


Regularization for GGM
I n > p or n < p, we want to find a sparse graph capturing

the conditional dependence between the entries of a Gaussian
random vector

I In GGM, the graph structure can be expressed only through its
precision matrix, Ω.

Formally, let Ω̂ denote a generic estimate of the precision matrix
and consider its transformation to a partial correlation matrix P̂.
Then the following relations can be shown to hold for all pairs
{Yj ,Yi} ∈ V with j 6= i :

(P̂)ji = 0 ⇐⇒ (Ω̂)ji = 0 ⇐⇒ Yj ⊥ Yi | V\ {Yj ,Yi}



What do we want?



Ridge or GLasso?

I The true (graphical) model need not be (extremely) sparse.
I We may prefer a regularization that shrinks the estimated

elements of the precision matrix proportionally
I Wieringen & Peeters (2016) demonstrate that the alternative

ridge estimators yield more stable networks vis-à-vis the
graphical lasso, in particular for more extreme p/n ratios.

I They provide empirical evidence in the graphical modeling
setting of what is tacitly known from regression (subset
selection) problems: ridge penalties coupled with post-hoc
selection may outperform the lasso.

https://www.sciencedirect.com/science/article/abs/pii/S0167947316301141


Steps

I Ridge penalty shrinks the estimated elements of Ω, but cannot
shoot them to zero.

I Hence, it requires a specific post-hoc thresholding for sparsity
I Steps:

I Estimating the elements of Ω with the optimal penalty
parameter λ∗

I Thresholding with λ∗ (False Discovery Rate - Efron)
I Recovering partial coefficients from Ridge estimates

I 2-Stage estimation
I De-biasing
I Re-estimations



Re-Estimation (De-biasing) - Intiution

The 2-stage partials slightly overestimate the de-biased estimates



Why Composite Likelihood method (CLM)?

I Ridge and Glasso require de-biasing, but it doesn’t have an
established literature

I Or 2-step partials are similar to 2-step LASSO and may not be
reliable in terms of their asymptotic properties.

I CLM is the perfect fit that removes the need for de-biasing and
provides reliable asymptotic properties



Results



Elasticities

I Zero-order correlations:
I We first use the full partial-correlation (delay-coordinate

embedding) matrix
I Apply the ridge-sparsity to see if mob is not “sparsified”
I Use non-sparsified mobs for zero-order correlations (i.e., remove

all intermediate lagged PR and mob columns)
I Apply the significance test to identify the significant correlations

in each window/lag: keep the significant ones.
I Elasticities:

I ε = ∂PR/PR
∂R/R = r spr

sr
R̄

PR
I When r is in the neighborhood of 1, the spread will be more

sensitive or less (i.e., ε ≶ 1 ) depending on two facts: the
spread of COVID-19 is more or less variable than the mobility(

SPR
SR

)
and the magnitude of restrictions relative to how

widespread PR is
(

R̄
PR

)



Counterfactual Elasticities

Counterfactuals for Montreal are
calculated in each rolling window
with a dynamic lag optimization:

rM
[sPR

sR

]M
[

R̄
P̄R

]NYC



What it tells us . . .

In order to have this much jump in the elasticity for Montreal, two
things have to be true in NYC relative to Montreal:

(1) the magnitude of the decline in mobility should be much higher
relative to the rise in spread (R̄/PR);

(2) the mobility should have a much higher temporal variation
relative to positivity rates (SPR/SR).

Given that the mobility metrics rather measure the people’s
behavioral response to the spread, these differences imply the
following possibilities in Montreal:

(1) the average reduction in mobility relative to the spread might
not have been enough in terms of its magnitude and speed;

(2) a significantly lower public sensitivity to the COVID-19 spread.



Concluding remarks

I We develop a method that can be used to capture the
spatiotemporal dynamics of the relations between two variables
(if the direction of correlations are known!)

I We show that the effect of (same) mobility restrictions on
positivity rates vary by time and location

I We measure this dynamic relationship by correlation (nature of
relationship) and elasticity (utilization of the relationship) for
Montreal, NYC, Toronto, and Nova Scotia

I We show the main results for Montreal and compare it with
NYC.

I We apply a counterfactual simulation to show why Montreal is
different than NYC


