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Motivation

» Can we recover the short-term temporal dynamics in the
relationship between two (or more) time-series signals with
minimum assumptions (about data structure, model)?

» For example, a method is needed to identify the number of
days required to generate an intended effect on positivity rates
(PR) following the mobility restrictions.

» Although the evidence unambiguously indicates successful
mobility restrictions have the largest effect on curbing the
pandemic (before vaccines), studies looking at the dynamics of
these confinement policies are rare.

» This method can be implemented to any two time-series signals
(with a known direction of correlation) to recover dynamic
correlations.



Summary

v

Two time-series signals: X; and Y: and both are 1(0),

Xe — Yeysand s #0 and s € {1: 21},

Find s* that maximizes the partial correlation between X; and
ytJrs

Since s* is not constant (time-varying relationship),
sliding-window correlations are calculated

Window length can be found by a wavelet analysis (as in TVFC
literature)

Since the algorithm searches for s* in the window, we need to
be sure that it represents the genuine association between two
series. It must be distinguishable from lagged synchrony that
would occur by chance.

Regularization and statistical significance can solve (or reduce)
this problem



Example: PR vs. Mobility
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Cross-Correlations - Level
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Cross-Correlations - (diff)
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Why correlations have no meaning?

P> Reverse causality: mobility reduction as a response to spikes in
cases.

» Mobility shows its effect on PR dynamically (over time).

» They are zero-order cross-correlations

» There is no static relationship. For instance, 7 day-lag could be
too short or too long in different windows.

» Contacts are not homogeneous across individuals and locations.



COVID-19: Effect of mobility on PR

» We use only observed data: Positivity Rate (cases/tests) and
Mobility index (Facebook)

» Take them as two time-series signals and see if we can recover
any meaningful relationship between them

> We use Montreal, as it is the most detailed COVID-19 Data
(not publicly available)



TVFC

Recently, time-varying functional connectivity (TVFC) has
emerged as a major topic in the resting-state BOLD fMRI
literature.

TVFC uses running correlations between pairs of stochastic
time series to identify their low-frequency evolution, which
gives an idea about the functional organization of the brain
Other fields, like Environmental Science, Behavioral Psychology,
and Finance use rolling correlations as their main tool

TVFC measures simultaneous associations between two
series in sliding-windows

The problem of “window-size" still remains as a main challenge

in both methods:
> very long windows eventually measure static connectivity.
> shorter windows can increase sensitivity for detecting
short transition states but at the expense of decreasing
the signal-to-noise ratio



Modified TVFC

» Ground truth: the mobility changes must predict the events
of infection measured by PR, only if mobility changes occur
before the events of PR.

P> Estimate the association with dynamically selected delays

» So that the only one lag (i.e., the time difference in starting
points of both series) maximizes the strength of their positive
association.



Algorithm
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Heatmap
Heatmap Matrix - Rank(2) Approx
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Maximums and Delays
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Shortcomings

» Correlations are not partial: intermediate lags are not controlled
» Even with a well-grounded epidemiological “truth” and with
de-trended 1(0) series, we need to know:

» Whether the genuine association between two series is
distinguishable from lagged synchrony that would occur by
chance.

» Whether correlations are out of 95% Cl



Partial Correlations

> Most studies look at the synchronous temporal correlations
among regions of interest (bivariate or multivariate). See Brain
Imaging Methods.

» When it's bivariate and synchronous, zero-order correlations
with sliding time-window based analysis are just fine

» When it's multivariate, n > p is required for non-singular
covariance matrix to obtain partial correlations.

» When n << p, a regularized inverse covariance (precision)
matrix is needed

» Regularization leads to a network analysis that identifies the set
of substantial connections (edges) between variables (nodes)
and eliminates others

> Mostly used in genomics, finance, psychology, neuroscience to
identify the “edges”.

> With a proper visualization of the network, it’s called Gaussian
Graphical Method, if MVN.


https://www.frontiersin.org/articles/10.3389/fnins.2018.00525/full
https://www.frontiersin.org/articles/10.3389/fnins.2018.00525/full

Delay-coordinate embedding
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Regularization

» Even if n > p, we can use regularization to identify “significant”
partial correlations
> Berkson’s paradox could be an issue

x1 <- rnorm(10@)
%2 <- rnorm(10@)
X3 <= 0.5*x1+0.5*xZ + rnorm(100)
mat <- chbind(x1, %2, x3)
S <- cov{mat)
-cov2cor{solve(S))

x1 xZ *3
x1 -1.0000000 -0.4076111 @.6@85341
®Z -8.4076111 -1.0000000 @.5647095
®3 ©.6085341 ©.5647095 -1.0000000
>

Although there is no link between Node 1 (PR) and Node 2 (mob),
the partial correlation between these two nodes could be high and
significant - Regularization may correct the paradox and
reduce the noise-to-signal ratio (Nie et al. 2015).

x,(t) = uy(t) + noise

%1(£) = uy (t) + noise
[x,(l) = 0.5xy(t) + 0.5x,(t) + noise

VWOV OV VW


https://link.springer.com/chapter/10.1007/978-3-319-23344-4_13

Regularization for GGM

» n>porn< p, we want to find a sparse graph capturing
the conditional dependence between the entries of a Gaussian
random vector

» In GGM, the graph structure can be expressed only through its
precision matrix, €.
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Formally, let €2 denote a generic estimate of the precision matrix
and consider its transformation to a partial correlation matrix P.
Then the following relations can be shown to hold for all pairs
{Y;,Yi} € V with j # i

(P)i=0+= (Qji=0«<= Y LY | V\{VY}, Y}



What do we want?
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Ridge

or GLasso?

The true (graphical) model need not be (extremely) sparse.
We may prefer a regularization that shrinks the estimated
elements of the precision matrix proportionally

Wieringen & Peeters (2016) demonstrate that the alternative
ridge estimators yield more stable networks vis-a-vis the
graphical lasso, in particular for more extreme p/n ratios.
They provide empirical evidence in the graphical modeling
setting of what is tacitly known from regression (subset
selection) problems: ridge penalties coupled with post-hoc
selection may outperform the lasso.


https://www.sciencedirect.com/science/article/abs/pii/S0167947316301141

Steps

» Ridge penalty shrinks the estimated elements of 2, but cannot
shoot them to zero.
» Hence, it requires a specific post-hoc thresholding for sparsity
> Steps:
» Estimating the elements of Q with the optimal penalty
parameter \*
» Thresholding with A\* (False Discovery Rate - Efron)
» Recovering partial coefficients from Ridge estimates
> 2-Stage estimation
» De-biasing
> Re-estimations



Re-Estimation (De-biasing) - Intiution
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The 2-stage partials slightly overestimate the de-biased estimates



Why Composite Likelihood method (CLM)?

> Ridge and Glasso require de-biasing, but it doesn't have an
established literature

» Or 2-step partials are similar to 2-step LASSO and may not be
reliable in terms of their asymptotic properties.

» CLM is the perfect fit that removes the need for de-biasing and
provides reliable asymptotic properties



Results

Montreal - Partial Maximum Correlations Montreal - Delays before Maximum Correlations
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Elasticities

» Zero-order correlations:

> We first use the full partial-correlation (delay-coordinate
embedding) matrix

> Apply the ridge-sparsity to see if mob is not “sparsified”

> Use non-sparsified mobs for zero-order correlations (i.e., remove
all intermediate lagged PR and mob columns)

» Apply the significance test to identify the significant correlations
in each window/lag: keep the significant ones.

> Elasticities: .
b o OPR/IPR _ sy R
- 8R/R — ''s PR
» When r is in the neighborhood of 1, the spread will be more
sensitive or less (i.e., € < 1) depending on two facts: the

spread of COVID-19 is more or less variable than the mobility

SS—F;f) and the magnitude of restrictions relative to how

widespread PR is (#)



Counterfactual Elasticities

New York

Average Elastipity = 1.44

Average Elastifity = 0.695

=Counterfactuals for Montreal are

8

. “calculated in each rolling window
. with a dynamic lag optimization:
= 7 NYC
: M
rM [SPR:| R
’ SR PR

0 0
Oct Nov Dec Jan Feb Mar
Dite
Differences between NYC and Montreal

nve Montreal
sensitivity = sc(PR)/d(R) 119525200 183261807
significance = mean(k) mean(PR) 01112558 00291587
Beta = cou[PR R)fvar(R) 79307361 140195609
Corretation 07082259 oS3z
Elasticity = Beta xsignificance 06953200 04207255
Counterfactual Elasticity 0.6953200 1.4404136



What it tells us ...

In order to have this much jump in the elasticity for Montreal, two
things have to be true in NYC relative to Montreal:

(1) the magnitude of the decline in mobility should be much higher
relative to the rise in spread (R/PR);

(2) the mobility should have a much higher temporal variation
relative to positivity rates (Spr/Sr).

Given that the mobility metrics rather measure the people's
behavioral response to the spread, these differences imply the
following possibilities in Montreal:

(1) the average reduction in mobility relative to the spread might
not have been enough in terms of its magnitude and speed;
(2) a significantly lower public sensitivity to the COVID-19 spread.



Concluding remarks

> We develop a method that can be used to capture the
spatiotemporal dynamics of the relations between two variables
(if the direction of correlations are known!)

» We show that the effect of (same) mobility restrictions on
positivity rates vary by time and location

» We measure this dynamic relationship by correlation (nature of
relationship) and elasticity (utilization of the relationship) for
Montreal, NYC, Toronto, and Nova Scotia

» We show the main results for Montreal and compare it with
NYC.

> We apply a counterfactual simulation to show why Montreal is
different than NYC



